On the number of spiral self-avoiding walks

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1984 J. Phys. A: Math. Gen. 173614
(http://iopscience.iop.org/0305-4470/17/18/530)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 30/05/2010 at 18:19

Please note that terms and conditions apply.

Szekeres has also calculated the correction term in equation (6) of GW which is

$$
c=-\frac{1}{4 \sqrt{3}}\left(\frac{\pi}{6 \sqrt{2}}+\frac{6 \sqrt{2}}{\pi}\right)
$$

and from this result we have calculated the correction term to equation (9), which yields, for the coefficient of $1 / \sqrt{n}$ in (9)

$$
\beta=-\frac{35 \sqrt{3}}{16 \pi}-\frac{7 \pi}{12 \sqrt{3}}=-2.26408 \ldots
$$

We also wish to point out a simple connection between 'live spirals' L_{n} and the class C_{n}, which is $c_{n}=l_{n+1}-l_{n}$.

Joyce (1984) has recently obtained the complete asymptotic expansion for s_{n}.

References

Joyce G S 1984 J. Phys. A: Math. Gen. 17 L463
Guttmann A J and Wormald N C 1984 J. Phys. A: Math. Gen. 17 L271

Corrigendum

On the number of spiral self-avoiding walks

Guttmann A J and Wormald N C 1984 J. Phys. A: Math. Gen. 17 L271-4
Line 3 of the abstract should read

$$
s_{n}=\exp \left[2 \pi(n / 3)^{1 / 2}\right] c / n^{7 / 4}[1+\mathrm{O}(1 / \sqrt{n})]
$$

Equation (3) should read

$$
s_{n}=\sum_{k=0}^{n-1} i_{k} c_{n-k}-\sum_{k=1}^{n-1} i_{k} i_{n-k}, \quad \text { with } i_{0}=1, c_{0}=0, c_{1}=1
$$

Below equation (5), 'is defined in (1)' should be replaced by 'satisfies (1)'.
Equation (6) should read

$$
c_{n}=(1 / 4 \sqrt{3} \cdot n) \exp \left[\pi(2 n / 3)^{1 / 2}\right][1+c / \sqrt{n}+\mathrm{O}(1 / n)]
$$

Equation (7) should read

$$
i_{n}=\left(\pi / 12 \sqrt{2} \cdot n^{3 / 2}\right) \exp \left[\pi(2 n / 3)^{1 / 2}\right][1+\mathrm{O}(1 / \sqrt{n})]
$$

